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1 Fixed Point Theorems

Fixed point theorems are theorems that do exactly what they say on the box; if we
have a map (or family of maps) 7', they guarantee the existence of a point = such
that Txz = x (for all T simultaneously). The general use of fixed point theorems is
to prove existence of some object we want; we then come up with maps 71" such that
Tx = x gives x the property we want.

These notes will cover two fixed point theorems and briefly mention an application
of each.

1.1 The Markov-Kakutani fixed point theorem

Definition 1.1. Let X be a vector space, and let K C X be convex. An operator
T : K — K is called affine if

T(txy + (1 —t)zy) =tTxy + (1 — t)Txs, x1,x9 € X, t € [0,1].

In other words, T" commutes with taking weighted averages of elements in K. This
is like a weaker version of linearity that corresponds to compatibility with convex
sets.

Theorem 1.1 (Markov-Kakutani). Let X be a LCS', let K C X be nonempty,
compact, and convez, and let F be a family of mutually commuting, continuous,
affine maps K — K. Then there exists some xo € K such that Txq = xo for all
T e F.

!This means a locally convex vector space. If you don’t know what this is, it’s a slight general-
ization of vector spaces with a norm topology.




Proof. For each T € F, define T = %ZZ;& T*. Then T™ is a again an affine
map taking K — K. If S,T € F, then S™ T commute for all n,m. Let
K ={T"(K):T € F,n > 1}, which is a collection of compact, convex sets. If
Ty,...,T, € F and ny,...,n, > 1, then
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Then K has the finite intersection property. So there exists an xg € [ cxc K-
We claim that z( is the desired fixed point. Take t € F, and let n > 1. Then
zo € T(K), so xg = T"™(z) for some z. In particular,

to= (a4 T(a) o+ T (2),

Applying T, we get

T(wo) = %(T(x) b TN @) 4 T ().

Subtracting this, we get
T(ro) — 20 = +(T"(x) 1) € ~(K — K)
o) — Tg = — x)—x) € —(K —
0 0 n n ;
where K — K is compact. This is true for any n. If U is an open neighborhood of

0, then there exists some n such that (K — K) C U. Then T () — zy € U for all
open neighborhoods U of 0, so T'(xy) = . O

Here is an application.

Definition 1.2. Let G be a compact topological group. A (left) Haar measure
is a probability measure p on G such that g.u = p for all g € G (i.e. u(gA) = p(A)
for all measurable A and g € G).

Corollary 1.1. Every compact, abelian group possesses a (left) Haar measure.

Proof. By the Riesz representation theorem and the Banach-Alaoglu theorem, P(G),
the probability measures on G, form a convex, weak*-compact subset of C(G)* =
M(G). Given g € G, we can define T, : C(G)* — C(G)* given by T,y — gipt. Then
F :={T, : g € G} is a family of mutually commuting, weak™*-continuous, affine maps
P(G) — P(G). By the Markov-Kakutani fixed point theorem, there exists a fixed
point p such that g.u = p for all g € G. O



1.2 The Ryll-Nardzewski fixed point theorem

Definition 1.3. Let X be a LCS, and let £ C X. A family F of maps £ — FE is
called noncontracting if for any x # y € E, there exists a continuous seminorm p
on X such that

inf p(Tx —T .

inf p(Tz —Ty) >0

So a family is noncontracting iff it separates points with respect to a seminorm.
Here is the Ryll-Nardzewski fixed point theorem.

Theorem 1.2 (Ryll-Nardzewski). Let X be a LCS, let K C X be nonempty, weakly
compact, and convex, and let F be a noncontracting semigroup of weakly continuous
affine maps K — K. Then there is a point xy such that Txg = xg for all T € F.

The following application of the Ryll-Nardzewski fixed point theorem is a strength-
ening of our previous application:

Corollary 1.2. Every compact group possesses a (left) Haar measure.

Proof. The proof is the same as before, except we need to verify that the maps
T, : P(G) = P(G) sending p +— g.p are noncontracting. This follows because each
T, is an isometry. 0]

To prove the theorem, we need a lemma.

Lemma 1.1 (Namioka-Asplund). Let X be a LCS, let Q C X be nonempty, sepa-
rable, weakly compact, and convex, and let p be a continuous seminorm on X. Then
for any € > 0, there exists a closed, convex subset C' C () such that

C%Q7 sup p(ZE—y><€
z,y€Q\C

In other words, if we have a compact convex set, we can shave off a piece of it
with small p-diameter and stay closed and convex.
Now let’s prove the theorem.

Proof. We first show that any finite subfamily {73,...,7,} C F has a fixed point;
we will later upgrade this result using compactness. Define

1
To:E(T1+---+Tn).



By the Markov-Kakutani fixed point theorem, there exists some xq with Toxy = xo.
For contradiction, assume there exists some 1 < k < n such that Tpxg # xo; then we
can reorder the maps 7; to ensure that

Trxo #xg V1I<k<m, Tixo =29 VYm+1<k<n.

Now denote ]

Then Tizo = x0, as well:

n 1
TO/QTO = — —(T1$0 4+ -+ TmZEQ)
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=—" (Toffo — —(Tppmo+ -+ + Tnﬂfo))
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Since F is noncontracting, there exists a continuous seminorm p on X and an
€ > 0 such that

p(TTyx — Txg) > 2¢ VI'e F,1<k<m.

Indeed, the noncontracting property gives us a seminorm that works for a single k,
and we can take the sum of these. Now let’s get into position to use the lemma.
Let Fy C F be the subsemigroup generated by 71, ...,7,,. That is,

Fo=AT;,---T;, : 1 <i; <n}
This is countable. Put Q =co{Tzo: T € Fy}; then Q is
e weakly compact: as a closed subset of the weakly compact set K,

e separable: by the countability of the generating set.

By the lemma, there exists a closed, convex subset C' C @) such that C' # @) and

sup p(r —y) <e.
z,yeQ\C



Since C' # @, there exists some S € Fy such that Szg € Q \ C. So we get

Sxo = STozg = (ST1$0 + -+ ST1$0) € Q \ C.

1
m
By the convexity of C, since this average is not in C', there must be some £ such

that STyzo ¢ C. But then
p(S(Tkwo) — Sx0) < p-diam(Q \ C) < ¢,

which contradicts our choice of seminorm p.
We have shown that every finite subfamily of maps in F has a fixed point. For
cach T' € F, define its set of fixed points FP(T) = {x € K : Tx = 2}. Then FP(T)

is
e weakly compact: because T' is weakly continuous and K is weakly compact.

So by the finite case, we have shown that {F'/P(T) : T € F} is a family of weakly
compact sets with the finite intersection property. So the intersection (. F'P(T’)
is nonempty. Any element of this intersection must be a mutual fixed point of all
the T' € F. O
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