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1 Fixed Point Theorems

Fixed point theorems are theorems that do exactly what they say on the box; if we
have a map (or family of maps) T , they guarantee the existence of a point x such
that Tx = x (for all T simultaneously). The general use of fixed point theorems is
to prove existence of some object we want; we then come up with maps T such that
Tx = x gives x the property we want.

These notes will cover two fixed point theorems and briefly mention an application
of each.

1.1 The Markov-Kakutani fixed point theorem

Definition 1.1. Let X be a vector space, and let K ⊆ X be convex. An operator
T : K → K is called affine if

T (tx1 + (1− t)x2) = tTx1 + (1− t)Tx2, x1, x2 ∈ X, t ∈ [0, 1].

In other words, T commutes with taking weighted averages of elements in K. This
is like a weaker version of linearity that corresponds to compatibility with convex
sets.

Theorem 1.1 (Markov-Kakutani). Let X be a LCS1, let K ⊆ X be nonempty,
compact, and convex, and let F be a family of mutually commuting, continuous,
affine maps K → K. Then there exists some x0 ∈ K such that Tx0 = x0 for all
T ∈ F .

1This means a locally convex vector space. If you don’t know what this is, it’s a slight general-
ization of vector spaces with a norm topology.
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Proof. For each T ∈ F , define T (n) = 1
n

∑n−1
k=0 T

k. Then T (n) is a again an affine
map taking K → K. If S, T ∈ F , then S(n), T (m) commute for all n,m. Let
K = {T (n)(K) : T ∈ F , n ≥ 1}, which is a collection of compact, convex sets. If
T1, . . . , Tp ∈ F and n1, . . . , np ≥ 1, then

T
(n1)
1 ◦ · · · ◦ T (np)

p (K) ⊆
p⋂

j=1

T
(nj)
j (K).

Then K has the finite intersection property. So there exists an x0 ∈
⋂

K′∈KK
′.

We claim that x0 is the desired fixed point. Take t ∈ F , and let n ≥ 1. Then
x0 ∈ T (n)(K), so x0 = T (n)(x) for some x. In particular,

x0 =
1

n
(x+ T (x) + · · ·+ T n−1(x)).

Applying T , we get

T (x0) =
1

n
(T (x) + · · ·+ T n−1(x) + T n(x)).

Subtracting this, we get

T (x0)− x0 =
1

n
(T n(x)− x) ∈ 1

n
(K −K),

where K −K is compact. This is true for any n. If U is an open neighborhood of
0, then there exists some n such that 1

n
(K −K) ⊆ U . Then T (x0)− x0 ∈ U for all

open neighborhoods U of 0, so T (x0) = x0.

Here is an application.

Definition 1.2. Let G be a compact topological group. A (left) Haar measure
is a probability measure µ on G such that g∗µ = µ for all g ∈ G (i.e. µ(gA) = µ(A)
for all measurable A and g ∈ G).

Corollary 1.1. Every compact, abelian group possesses a (left) Haar measure.

Proof. By the Riesz representation theorem and the Banach-Alaoglu theorem, P(G),
the probability measures on G, form a convex, weak*-compact subset of C(G)∗ ∼=
M(G). Given g ∈ G, we can define Tg : C(G)∗ → C(G)∗ given by Tgµ 7→ g∗µ. Then
F := {Tg : g ∈ G} is a family of mutually commuting, weak*-continuous, affine maps
P(G) → P(G). By the Markov-Kakutani fixed point theorem, there exists a fixed
point µ such that g∗µ = µ for all g ∈ G.
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1.2 The Ryll-Nardzewski fixed point theorem

Definition 1.3. Let X be a LCS, and let E ⊆ X. A family F of maps E → E is
called noncontracting if for any x 6= y ∈ E, there exists a continuous seminorm p
on X such that

inf
T∈F

p(Tx− Ty) > 0.

So a family is noncontracting iff it separates points with respect to a seminorm.
Here is the Ryll-Nardzewski fixed point theorem.

Theorem 1.2 (Ryll-Nardzewski). Let X be a LCS, let K ⊆ X be nonempty, weakly
compact, and convex, and let F be a noncontracting semigroup of weakly continuous
affine maps K → K. Then there is a point x0 such that Tx0 = x0 for all T ∈ F .

The following application of the Ryll-Nardzewski fixed point theorem is a strength-
ening of our previous application:

Corollary 1.2. Every compact group possesses a (left) Haar measure.

Proof. The proof is the same as before, except we need to verify that the maps
Tg : P(G) → P(G) sending µ 7→ g∗µ are noncontracting. This follows because each
Tg is an isometry.

To prove the theorem, we need a lemma.

Lemma 1.1 (Namioka-Asplund). Let X be a LCS, let Q ⊆ X be nonempty, sepa-
rable, weakly compact, and convex, and let p be a continuous seminorm on X. Then
for any ε > 0, there exists a closed, convex subset C ⊆ Q such that

C 6= Q, sup
x,y∈Q\C

p(x− y) < ε.

In other words, if we have a compact convex set, we can shave off a piece of it
with small p-diameter and stay closed and convex.

Now let’s prove the theorem.

Proof. We first show that any finite subfamily {T1, . . . , Tn} ⊆ F has a fixed point;
we will later upgrade this result using compactness. Define

T0 =
1

n
(T1 + · · ·+ Tn).
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By the Markov-Kakutani fixed point theorem, there exists some x0 with T0x0 = x0.
For contradiction, assume there exists some 1 ≤ k ≤ n such that Tkx0 6= x0; then we
can reorder the maps Ti to ensure that

Tkx0 6= x0 ∀1 ≤ k ≤ m, Tkx0 = x0 ∀m+ 1 ≤ k ≤ n.

Now denote

T ′0 =
1

m
(T1 + · · ·+ Tm).

Then T ′0x0 = x0, as well:

T ′0x0 =
n

m
· 1

n
(T1x0 + · · ·+ Tmx0)

=
n

m
·
(
T0x0 −

1

n
(Tm+1x0 + · · ·+ Tnx0)

)
=

n

m
·
(
x0 −

n−m
n

x0

)
= x0.

Since F is noncontracting, there exists a continuous seminorm p on X and an
ε > 0 such that

p(TTkx− Tx0) ≥ 2ε ∀T ∈ F , 1 ≤ k ≤ m.

Indeed, the noncontracting property gives us a seminorm that works for a single k,
and we can take the sum of these. Now let’s get into position to use the lemma.

Let F0 ⊆ F be the subsemigroup generated by T1, . . . , Tn. That is,

F0 = {Ti1 · · ·Tim : 1 ≤ ij ≤ n}.

This is countable. Put Q = co{Tx0 : T ∈ F0}; then Q is

• weakly compact: as a closed subset of the weakly compact set K,

• separable: by the countability of the generating set.

By the lemma, there exists a closed, convex subset C ⊆ Q such that C 6= Q and

sup
x,y∈Q\C

p(x− y) < ε.

4



Since C 6= Q, there exists some S ∈ F0 such that Sx0 ∈ Q \ C. So we get

Sx0 = ST0x0 =
1

m
(ST1x0 + · · ·+ ST1x0) ∈ Q \ C.

By the convexity of C, since this average is not in C, there must be some k such
that STkx0 /∈ C. But then

p(S(Tkx0)− Sx0) ≤ p-diam(Q \ C) ≤ ε,

which contradicts our choice of seminorm p.
We have shown that every finite subfamily of maps in F has a fixed point. For

each T ∈ F , define its set of fixed points FP (T ) = {x ∈ K : Tx = x}. Then FP (T )
is

• weakly compact: because T is weakly continuous and K is weakly compact.

So by the finite case, we have shown that {FP (T ) : T ∈ F} is a family of weakly
compact sets with the finite intersection property. So the intersection

⋂
T∈F FP (T )

is nonempty. Any element of this intersection must be a mutual fixed point of all
the T ∈ F .
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